
J
H
E
P
0
4
(
2
0
0
7
)
0
1
9

Published by Institute of Physics Publishing for SISSA

Received: February 2, 2007

Revised: March 21, 2007

Accepted: March 27, 2007

Published: April 3, 2007

Noncritical-topological correspondence: disc

amplitudes and noncompact branes

Anindya Mukherjee, Sunil Mukhi and Rahul Nigam

Tata Institute of Fundamental Research

Homi Bhabha Rd, Mumbai 400 005, India

E-mail: anindya m@theory.tifr.res.in, mukhi@theory.tifr.res.in,

rahulnig@theory.tifr.res.in

Abstract: We examine the duality between type 0 noncritical strings and topological B-

model strings, with special emphasis on the flux dependence. The former theory is known to

exhibit holomorphic factorisation upto a subtle flux-dependent disc term. We give a precise

definition of the B-model dual and propose that it includes both compact and noncompact

B-branes. The former give the factorised part of the free energy, while the latter violate

holomorphic factorisation and contribute the desired disc term. These observations are

generalised to rational radii, for which we derive a nonperturbatively exact result. We also

show that our picture extends to a proposed alternative topological-anti-topological picture

of the correspondence for type 0 strings.

Keywords: Topological Strings, M(atrix) Theories.

c© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep042007019/jhep042007019.pdf

mailto:anindyaprotect global let OT1	extunderscore unhbox voidb@x kern .06emvbox {hrule width.3em}OT1	extunderscore m@theory.tifr.res.in
mailto:mukhi@theory.tifr.res.in
mailto:rahulnig@theory.tifr.res.in
http://jhep.sissa.it/stdsearch


J
H
E
P
0
4
(
2
0
0
7
)
0
1
9

Contents

1. Introduction 1

2. Noncritical-topological duality 2

2.1 Bosonic case 2

2.2 Type 0 case, R = 1 4

2.3 Integer radius 8

2.4 Rational radius 9

3. Disc amplitudes and noncompact branes 11

3.1 R = 1 11

3.2 Integer and rational radius 14

4. Discussion 15

1. Introduction

It has been known for some time [1 – 5] that noncritical string theories in two spacetime

dimensions have a topological description. Subsequently the actual correspondence between

them and their topological duals on a Calabi-Yau manifold was found by Ghoshal and

Vafa [6]. Noncritical c = 1 string theory at the self-dual radius is perturbatively equivalent

to topological string theory on a deformed conifold. For integer multiples of the self-dual

radius, the corresponding topological theory lives on a ZZn orbifold of the conifold geometry.

The noncritical-topological equivalence was shown both via Landau-Ginsburg models and

using the ground ring [7] construction.

The above correspondence has led to considerable illumination of the existence and

properties of noncritical strings. But because the bosonic c = 1 string is nonperturbatively

unstable, it has not been possible to extend the equivalence to the nonperturbative level.

Such an extension can be explored in the case of the nonperturbatively stable Type 0

string theories in two dimensions. These too have a description in terms of topological

string theory, first proposed in ref. [8] and further explored in refs. [9 – 11]. The Calabi-Yau

dual to noncritical type 0 strings at a special radius is a ZZ2 orbifold of the conifold, while

for integer multiples of this radius it is a ZZ2p orbifold.

One of the most interesting aspects of noncritical type-0 strings is the possibility of

turning on background RR fluxes: type 0A theory has two RR gauge fields and type 0B

theory has an RR scalar whose equations of motion admit linear growth in space and

time [12]. Thus in both cases there is a pair of independent RR fluxes q and q̃. At the

level of the closed string perturbation expansion the theory depends only on |q| + |q̃|, but
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at the disc level there is a subtle and important additional term in the free energy which

depends on |q|− |q̃|, as found by Maldacena and Seiberg in [13]. Only after this extra term

is included in the free energy, one finds a satisfactory physical interpretation wherein one

of the two fluxes is sourced by ZZ 0-branes while the other has no sources.

However, the dual topological B-model of refs. [8] and [10] depends on the complex-

structure moduli of the orbifolded conifold, which in turn depend on the fluxes only through

the combination |q| + |q̃|. Thus it is not obvious how the correspondence can be extended

to incorporate this effect. Our aim here will be to re-examine the duality with particular

reference to flux dependence. We will make the existing proposal more precise and will

then argue that the topological side must be extended to incorporate a new feature, namely

noncompact branes.1 When placed at appropriate locations, they contribute precisely the

desired disc term in the free energy. Thereafter we generalise these observations to integer

multiples of the special radius and to infinite radius.

One key difference between our analysis and previous ones is that we use the result of

ref. [13] which we consider to be rigorously true as a convergent integral representation of

the full (nonperturbative) free energy of type 0 strings.

2. Noncritical-topological duality

2.1 Bosonic case

In this section we briefly review some relevant aspects of topological string theory on

noncompact Calabi-Yau spaces. The simplest example is the conifold, described by the

equation

zw − px = 0, (2.1)

where z,w, p, x are complex coordinates of C
4. This is therefore a three complex dimen-

sional non-compact manifold. It has a singularity at the origin. The singularity can be

removed by blowing up an S3 cycle at the origin, after which the equation becomes:

zw − px = µ, (2.2)

where µ is in general complex and its modulus determines the size of the S3. Eq. (2.2)

is known as the deformed conifold (DC) and µ is its complex structure parameter. The

singularity in eq. (2.1) can alternatively be removed by blowing up an S2 at the origin.

The resulting manifold is the resolved conifold (RC).

The topological A model on any given Calabi-Yau is a theory of quantised deformations

of the Calabi-Yau, sensitive only to the Kähler moduli. The B model is similar but depends

only on the complex structure moduli. The noncritical-topological duality proposed by

Ghoshal and Vafa [6] stems from the observation [7] that the ground ring of c = 1 string

theory at the self-dual radius has four generators z,w, p, x that are worldsheet operators of

conformal dimension 0 in the BRST cohomology, satisfying the conifold relation eq. (2.2)

where

µ = igsµM (2.3)

1A tentative indication of a role for noncompact branes in this duality was found in ref. [8].
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and µM is the cosmological constant on the worldsheet in the noncritical string theory.2

Based on this and other evidence, they argued that the c = 1 string with cosmological

constant µM at self-dual radius is equivalent to the topological B-model on the deformed

conifold with deformation parameter µ. In particular their argument requires the genus-g

partition functions of the two theories to coincide. Writing the genus expansions of the

free energies of the c = 1 theory and the topological theory on the deformed conifold as:

Fc=1(µM ) =

∞
∑

g=0

Fc=1
g µ

2−2g
M

F top,DC(µ) =

∞
∑

g=0

F top,DC
g µ2−2g (2.4)

the claim then amounts to:

Fc=1
g = (igs)

2−2gF top,DC
g , all g (2.5)

for which ample evidence has been found [15, 16]. There is also expected to be a 1-1 corre-

spondence between the physical observables (tachyons in the c = 1 case and deformations

of S3 in the B-model case) and their correlators (for a recent discussion, see ref. [17]).

Going beyond the self-dual radius, it has long been known [18] that the ground ring

of the c = 1 string at integer multiples of the self-dual radius, R = p, is a ZZp orbifold of

the conifold. This space has p singularities connected by (complex) lines. The deformed

version of this space is described by the equation:

zw −

p
∏

k=1

(px − µk) = 0 (2.6)

which has p homology 3-spheres of size µ1, µ2, . . . , µp, each concealing one of the singular-

ities. The geometry develops a conifold singularity if any of the µi’s become zero, and a

line singularity if µi = µj for i 6= j. If the µi’s are all distinct and nonzero, the manifold is

non-singular.

We expect the p deformation parameters to be in correspondence with p distinct (non-

normalisable) deformations of the noncritical string theory [19]. If we only choose to

perform the cosmological constant deformation µM then these p deformation parameters

must be determined in terms of µM . It has been shown via a Schwinger computation [20]

that for an integer radius the parameters µk are given by igs
µM +ik

p
, and k = −p−1

2 ,−p−1
2 +

2The factor of i exhibited here is often dropped in the literature, though it has been correctly placed

in refs. [9, 11]. It is important because the genus expansion of the topological string free energy is F top =
P

g
χgµ2−2g , with coefficients that alternate in sign (given by the virtual Euler characteristic of the moduli

space of genus g Riemann surfaces), while that of the c = 1 string is Fc=1 =
P

g
|χg |(gsµM )2−2g and is

therefore positive in every genus as befits a unitary theory. A discussion of this point may be found in

ref. [14].
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1, · · · , p−1
2 . Moreover, the free energy factorises3 into a sum of contributions as follows:

FR=p
c=1 (µ) = F top,DOCp({µk}) =

p−1

2
∑

k=− p−1

2

F top,DC(µk) (2.7)

This factorisation can be understood in the Riemann surface formulation of [21]. In

this approach one thinks of the following class of noncompact Calabi-Yaus:

zw − H(p, x) = 0 (2.8)

as a fibration described by the pair of equations:

zw = H, H(p, x) = H (2.9)

The fibre is zw = H, a complex hyperbola, and the base is the complexified p, x plane.

Above points in the base satisfying H(p, x) = 0, the fibre degenerates to zw = 0, a pair of

complex planes intersecting at the origin. Such points in the base form a Riemann surface,

and it is this surface that governs the physics of the topological string theory. Moreover

the function H(p, x) plays the role of a Hamiltonian and lends an integrable structure to

the system.

In the present case of the orbifolded conifold of eq. (2.6), the Hamiltonian is:

H(p, x) =

p
∏

k=1

(px − µk) (2.10)

and hence the Riemann surface H(p, x) = 0 factorises into disjoint Riemann surfaces [10].

This is the physical reason for the factorisation of the free energy into a sum of contribu-

tions, one for each branch of the Riemann surface.

The above statements are meaningful only at the level of string perturbation theory,

since the bosonic c = 1 is not well-defined nonperturbatively. Moreover, the computation

of ref. [20] is performed by manipulating a divergent series. Later we will discuss the

analogous relation for the type 0A string, and will demonstrate factorisation of the free

energy without ever using perturbation expansions or divergent series. In this way we will

reliably show that it is nonperturbatively exact.

2.2 Type 0 case, R = 1

In ref. [8] and subsequently ref. [9 – 11], the above ideas were applied to the case of the

type 0A string. Here it is convenient to choose units in which α′ = 2. A new feature of

the type 0A string relative to the bosonic case (for more details, see refs. [12, 22, 13] and

references therein) is that it has two distinct quantised parameters q and q̃. In the Liouville

description these arise as the fluxes of two distinct Ramond-Ramond 2-form field strengths,

Ftφ, F̃tφ. The theory has a symmetry, labelled S-duality, under which the cosmological

3We use the word “factorise” even though the free energy splits into a sum, rather than a product, of

terms. What factorises is of course the partition function.
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constant µM changes sign and at the same time, F ↔ F̃ . In the more powerful matrix

quantum mechanics (MQM) description of the same string theory, the fluxes have quite an

asymmetric origin. For µM < 0, q is the difference in the number of D0 and D̄0 branes,

or the net number of D0 branes, in the MQM. On the other hand, q̃ is the coefficient of a

Chern-Simons term involving gauge fields on the branes and anti-branes. For µM > 0 the

roles of q, q̃ are reversed. On reducing to eigenvalues, each of the integers q and q̃ can be

interpreted as the quantised angular momentum of fermions moving in the complex plane.

Moreover, if both are turned on there is an additional coupling term arising from projection

to nonsinglet sectors, such that the Hamiltonian eventually depends only on (q + q̃).

The Euclidean type 0A theory has a special value of the radius, R = 1 in these units,

at which the correspondence with the topological string is simplest. This radius is the

analogue of the self-dual radius for the bosonic c = 1 string. For type 0A noncritical

strings at the special radius, the corresponding dual geometry in the topological string has

been proposed [8] to be a deformed ZZ2 orbifold of the conifold (DOC). The identification is

again based on the analysis of the ground ring of the noncritical theory. The DOC dual to

the type 0A string has two S3’s whose complex structure parameters are identified4 with

the type 0A parameters µM , q̂ = q + q̃ as:

µ = igs(µM − iq̂
2 ) =

gs

2
y

µ′ = −igs(µM + iq̂
2 ) =

gs

2
ȳ (2.11)

with:

y = q̂ + 2iµM (2.12)

Thus the equation of the DOC is:

zw + (px − µ)(px − µ′) = 0 (2.13)

Notice that complex conjugation exchanges the moduli of the two S3’s and acts as S-

duality of the noncritical string. This is because both conjugation and S-duality act as

q̂ → q̂, µM → −µM . As a result the S-duality of type 0A noncritical strings is explicitly

geometrised in the topological B-model dual.

We note at this point that a different point of view about noncritical-topological duality

for type 0 strings is espoused in ref. [11], according to which the topological string is defined

on the “holomorphic square root” of the space we have been discussing, which is an ordinary

conifold rather than an orbifolded one. The noncritical-topological correpondence then has

to be reformulated by saying that we have to add topological and anti-topological free

energies. While this seems to fit in with the picture of topological strings emerging from

black hole studies [23, 24], it is not clear that in practical terms it differs from the older

proposal of ref. [8]. However we will see later that our proposal for a precise topological dual

involving noncompact branes can also be phrased in topological-anti-topological language.

4Again, this identification substantially agrees with that in refs. [9, 11] but differs from that in refs. [8, 10]

by factors of i.
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The manifold eq. (2.13) exists and is nonsingular for all nonzero µ 6= µ′. However, the

topological B-model on it is dual to type 0A noncritical string theory only in the special

case µ′ = µ̄. With this restriction, the space is nonsingular as long as µ has an imaginary

part. From eq. (2.11), this will in turn be the case as long as the cosmological constant µM

of the noncritical theory is nonzero, which is natural since µM cuts off the strong coupling

end of the Liouville direction. Of course from the matrix model point of view there is still

a sensible string theory when µM = 0, but one in which the standard genus expansion of

the continuum theory does not hold, and where the role of the string coupling is played by

the inverse RR flux. The region where the RR flux is of the same order as, or larger than,

the cosmological constant has received some discussion in the literature [25, 26].

The above identification leads to the following proposed equality between type 0A

string and topological B model free energies:

F0A(µM , q, q̃, R = 1) = F top,DOC
(

µ =
gs

2
y, µ′ =

gs

2
ȳ
)

(2.14)

Using arguments analogous to those described above for the bosonic string, we also find

that the r.h.s. perturbatively factorises:

F top,DOC
(

µ =
gs

2
y, µ′ =

gs

2
ȳ
)

= F top,DC
(gs

2
y
)

+ F top,DC
(gs

2
ȳ
)

(2.15)

In principle we can now investigate the validity of the above correspondence beyond per-

turbation theory. This point was considered in refs. [9, 11]. However, the methods used

there involve manipulation of divergent series, and we will be able to derive all our corre-

spondences using convergent integral representations of the relevant special functions.

Let us see how this works in some detail. As in ref. [10], we consider the open-string

dual of the DOC obtained from the Gopakumar-Vafa correspondence [27]. This theory lives

on a resolved orbifolded conifold (ROC) with two P 1’s whose (complex) size parameter

is irrelevant in the B-model but which have respectively N1, N2 2-dimensional B-branes

wrapped over them, where:

N1 =
y

2
=

q̂

2
+ iµM

N2 =
ȳ

2
=

q̂

2
− iµM (2.16)

The number of branes in this correspondence is inevitably complex, and therefore a pre-

scription is required to complexify starting from real integer values.5

In the open string description, the partition function arises as follows. Using eqs. (2.11)

and (2.12), we find:

F top,DOC
(

µ =
gs

2
y, µ′ =

gs

2
ȳ
)

= F top,ROC
(

N1 =
y

2
, N2 =

ȳ

2

)

= F top,RC
(

N =
y

2

)

+ F top,RC
(

N =
ȳ

2

)

(2.17)

5However, we see that the total number of branes in the background N1 + N2 = q̂ is real and integer.

This is striking, and somewhat reminiscent of fractional branes, though we do not have an explanation of

this fact.
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where in the last step, factorisation of the Hamiltonian H(p, x) has been used.

On an ordinary resolved conifold, the free energy of N D-branes is given by the log of

the matrix integral:

e−Ftop,RC(N) =
1

vol(U(N)

∫

dMe−
1
2
trM2

=
(2π)

N2

2

vol(U(N)
(2.18)

Now we use [28]

vol(U(N)) =
(2π)

1
2
(N2+N)

G2(N + 1)
(2.19)

where G2(x) is the Barnes double-Γ function [29] defined by:

G2(z + 1) = Γ(z)G2(z), G2(1) = 1 (2.20)

Thus we find

−F top,RC
(

N =
y

2

)

−F top,RC
(

N =
ȳ

2

)

=
(

log G2

(y

2
+ 1

)

−
y

4
log 2π

)

+ c.c. (2.21)

Let us compare the above with what we know about the noncritical string starting from

the matrix model. In ref. [13] the authors have given a complete nonperturbative solution

for the free energy of Type 0 noncritical strings at arbitrary radius R. The free energy of

type 0A theory is given by:

−F0A(µM , q, q̃, R) = Ω(y,R) + Ω(ȳ, R) +
πµMR

2
(|q| − |q̃|) (2.22)

where the function Ω is defined by the convergent (for Re y > −
(

1 + 1
R

)

) integral:

Ω(y,R) ≡ −

∫ ∞

0

dt

t

[

e−
yt

2

4 sinh t
2 sinh t

2R

−
R

t2
+

Ry

2t
+

(

1

24

(

R +
1

R

)

−
Ry2

8

)

e−t

]

(2.23)

At the special radius R = 1 it is easily shown from the integral form that:

Ω(y,R = 1) = log G2

(y

2
+ 1

)

−
y

4
log 2π (2.24)

where G2 is the Barnes function discussed above.

If we temporarily ignore the last term in eq. (2.22), we see that the free energy is the

sum of holomorphic and antiholomorphic contributions. Moreover, each of these is known

to be the (complexified) free energy of the bosonic c = 1 string at radius R [30]. This is in

agreement with eqs. (2.14), (2.15).

However, the last term in eq. (2.22) does not seem to come from the topological string.

We will discuss this issue in the following section. First we will generalise the considerations

of this subsection to the case where the radius of the time circle is different from R = 1, in

particular to integer radii. We will also comment on the case of rational radii R = p
p′

.
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2.3 Integer radius

We have seen that the c = 1 bosonic string at R = p (an integer multiple of the self-

dual radius R = 1) is dual to a topological string living on a Zp orbifold of the conifold.

An analogous result has been proposed for the type 0A string [11]. We will provide a

simple and general derivation of this result using only properties of convergent integral

representations.

Inserting the value R = p into the expression for Ω, eq. (2.23), we rewrite the first

term in the integrand:

e−
yt

2

4 sinh t
2 sinh t

2p

→
e−

yt

2

4(sinh t
2)2

sinh t
2

sinh t
2p

(2.25)

Next, use:

sinh t
2

sinh t
2p

=

p
∑

k=1

e
t
2p

(p−(2k−1)) (2.26)

Now define:

yk = y +
−p + (2k − 1)

p
, k = 1, 2, . . . , p (2.27)

Using the identities:

p
∑

k=1

1

t2
=

p

t2

p
∑

k=1

yk

2t
=

py

2t

p
∑

k=1

(

1

12
−

y2
k

8

)

=
1

24

(

p +
1

p

)

−
py2

8
(2.28)

of which only the third one is not completely obvious, but nonetheless easy to prove, it

follows that:

Ω
(

y,R = p
)

=

p
∑

k=1

Ω(yk, R = 1) (2.29)

We see that the free energy at rational radius factorises into 2p distinct contributions,

of which p are holomorphic in y and the remaining are anti-holomorphic. Each of the

contributions corresponds to a theory at R = 1, or equivalently to the contribution of

topological B-branes. The factorisation is exact.

Let us analyse this in some more detail. First, by definition Re y ≥ 0, which not only

ensures convergence of the l.h.s. of eq. (2.29), but also ensures that the r.h.s. is convergent

since this implies that Re yk > −
(

1 + 1
R

)

= −2 for all k. Therefore the equality is between

convergent integral representations as promised.

From the above result we can conclude that for type 0 string theory at every integer

radius R = p, there is an exact noncritical-topological correspondence where the corre-

sponding topological string lives on a Z2p orbifold [18] of the conifold, whose deformed

– 8 –
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version is:

zw −

k=p
∏

k=1

(px − µk)

k=p
∏

k=1

(px − µ̄k) (2.30)

where

µk =
gs

2
yk (2.31)

and yk are defined in eq. (2.27). This manifold has 2p independent 3-cycles that occur

in complex conjugate pairs. The factorisation into contributions from these cycles is non-

perturbatively exact upto non-universal terms, and even those terms vanish identically at

integer 0A radius.

The resolved version of this correspondence would involve the same Z2p orbifold of the

conifold but now with the 2p singularities blown up into P 1’s with Nk B-branes wrapped

over each of the first p cycles, and the complex conjugate number of branes on the remaining

p cycles, where:

Nk =
yk

2
(2.32)

As before, the partition function in this picture arises from the vol(U(N) factors associated

to each set of Nk branes, giving the most direct derivation of the noncritical-topological

correspondence.

This generalised correspondence too can be phrased in topological-anti-topological

language. In this case the topological theory lives on a Zp orbifold, with p cycles labelled

by an integer k and Nk branes wrapped on each of them. The remaining contribution to

the free energy arises on combining with the anti-topological version of this theory.

2.4 Rational radius

Let us now consider more general rational radii of the form R = p
p′

, with p and p′ co-prime.

A similar derivation to the previous one goes through in this case, though the interpretation

presents some subtleties that we will discuss.

Inserting the value of R into the expression for Ω, Eq. (2.23), we send t → t
p′

and then

rewrite the first term in the integrand:

e
− yt

2p′

4 sinh t
2p′

sinh t
2p

→
e
− yt

2p′

4(sinh t
2)2

sinh t
2

sinh t
2p′

sinh t
2

sinh t
2p

(2.33)

Using eq. (2.26) and defining:

yk,k′ =
y − p′ + (2k′ − 1)

p′
+

−p + (2k − 1)

p
, k = 1, 2, . . . , p; k′ = 1, 2, . . . , p′ (2.34)

– 9 –
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we find the following identities, generalising eq. (2.28):

p
∑

k=1

p′
∑

k′=1

1

t2
=

pp′

t2

p
∑

k=1

p′
∑

k′=1

yk,k′

2t
=

py

2t

p
∑

k=1

p′
∑

k′=1

(

1

12
−

y2
k,k′

8

)

=
1

24

(

p

p′
+

p′

p

)

−
py2

8p′
(2.35)

Thus we find:

Ω
(

y,R =
p

p′

)

=

p′
∑

k′=1

p
∑

k=1

Ω(yk,k′, R = 1) −

(

1

24

( p

p′
+

p′

p

)

−
py2

8p′

)

log p′ (2.36)

Thus, at rational radius the free energy factorises into 2pp′ distinct contributions, of which

pp′ are holomorphic in y and the remaining are anti-holomorphic. However, in general the

factorisation is exact only upto an analytic and therefore non-universal term. If we consider

the special case of p′ = 1, corresponding to integer radius in the type 0A theory, then the

non-universal term vanishes. On the other hand if we take p = 1, corresponding to even

integer radius in the type 0B theory, then the non-universal term is present. Subtracting

the two expressions (after scaling y → ym in one of them) we find:

Ω

(

ym,R =
1

m

)

− Ω (y,R = m) = −

(

1

24

(

m +
1

m

)

−
y2

8m

)

log m (2.37)

which is precisely eq. (A.39) of [13]. There, we see that the apparent violation of T-duality

by the extra term is actually harmless and can be understood as due to the difference in

natural cutoffs for type 0A and 0B. This explains the presence of the non-universal term,

and confirms that its presence can be ignored.

We would now like to interpret the above factorisation property in terms of contribu-

tions from singularities. For the bosonic string, the original ground ring analysis of ref. [18]

tells us that the (singular) ring at R = p
p′

is a Zp × Zp′ orbifold of the conifold. Assuming

that in type 0 strings the parameters are complexified and occur in complex-conjugate

pairs, we expect in this case to find a Z2p × Z2p′ orbifold of the form:

p′
∏

k′=1

(zw − αk′)

p′
∏

k′=1

(zw − ᾱk′) =

p
∏

k=1

(px − βk)

p
∏

k=1

(px − β̄k) (2.38)

for some set of p + p′ complex parameters αk′ , βk. Such a space no longer has an interpre-

tation as a fibration over a Riemann surface and the analysis of its partition function is

therefore more complicated. We expect that for some (not necessarily simple) choice of the

parameters, the free energy on this space can be written as a sum of terms as in eq. (2.36)

but will not be able to show this here.
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An alternate interpretation of the factorised free energy is that it corresponds to a

Z2pp′ orbifold of the conifold:

zw −

k=p

k′=p′
∏

k=1

k′=1

(px − µk,k′)

k=p

k′=p′
∏

k=1

k′=1

(px − µ̄k,k′) (2.39)

where

µk,k′ =
gs

2
yk,k′ (2.40)

and yk,k′ are defined in eq. (2.34). This manifold has 2pp′ independent 3-cycles that occur

in complex conjugate pairs. The resolved version of this space has the 2pp′ singularities

blown up into P 1’s with Nk,k′ B-branes wrapped over each of the first pp′ cycles, and the

complex conjugate number of branes on the remaining pp′ cycles, where:

Nk,k′ =
yk,k′

2
(2.41)

The advantage of this latter interpretation is that it preserves the fibred structure of the

manifold with a Riemann surface as the base, and therefore all previous computations

manifestly go through in the same way. Unfortunately this interpretation is at variance

with the original proposal [6] that the variety occurring on the topological B-model side is

in correspondence with the ground ring on the noncritical side.

To conclude, we would like to point out that much of the above discussion is valid even

if p and p′ are not co-prime. This leads to relations between topological string partition

functions. Indeed, one can consider the extreme case p = p′ and the identity eq. (2.36)

remains true. Now it expresses the unit-radius free energy of the theory at a parameter y

in terms of unit-radius free energies at a set of parameters yk,k′. The significance of such

relations may be interesting to explore.

3. Disc amplitudes and noncompact branes

3.1 R = 1

In the correspondence between noncritical type 0A strings and the B-model on the conifold

eq. (2.13) (and more generally eq. (2.30)) that we have discussed above, there is right away

a puzzle. The former depends on three parameters, q, q̃, µM , which in the continuum

Liouville description arise as the two independent RR fluxes and the cosmological constant

(in the matrix model description these three parameters arise as a net D-brane number,

a Chern-Simons term and the Fermi level respectively [12, 13]). However the topological

dual only depends on the complex number y = |q|+ |q̃|+ 2iµM , and therefore on only two

of these three parameters. It reproduces most of the free energy, which indeed depends

only on two parameters and is the sum of mutually complex conjugate terms. However,

the extra term in the free energy:

Fdisc,2 = −
πR

2
µM (|q| − |q̃|) (3.1)
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is unaccounted for (the reason for the label on this contribution will become clear shortly).

This term is responsible for an important effect. From the factorised part of the free

energy one extracts the following disc contribution in the limit of large µ and fixed q̂ [13]:

Fdisc,1 = +
πR

2
|µM |(|q| + |q̃|) (3.2)

Hence the total disc amplitude is:

Fdisc = Fdisc,1 + Fdisc,2 =
πR

2

[

(

|µM | − µM

)

|q| +
(

|µM | + µM

)

|q̃|
]

(3.3)

This can be written as:

Fdisc = (2πR)
µM

2
|q̃|, µM > 0

= (2πR)
|µM |

2
|q|, µM < 0 (3.4)

The physical interpretation is that for µM > 0 the RR flux of q̃ units associated to the

gauge field Ã is supported by |q̃| ZZ branes in the vacuum, with the contribution per brane

to the free energy being given by the product of its extent in Euclidean time (2πR) and

its tension ( |µM |
2 ). The other flux of q units associated to the gauge field A has no source.

Similarly for µM < 0 the vacuum contains |q| ZZ branes sourcing the first flux while the

other flux of q̃ units is not supported by any source.

Note that in the absence of the term Fdisc,2 there is no satisfactory physical inter-

pretation of the disc amplitude in terms of ZZ branes. This makes the term extremely

important for a consistent noncritical string theory.

We now propose that the missing term is supplied, on the topological side, by non-

compact B-branes wrapping a degenerate fibre of the Calabi-Yau over the Riemann surface

H(p, x) = 0. Such branes have been extensively studied in refs. [31, 21] where they have

been shown to give rise to the Kontsevich parameters of topological matrix models. These

branes are, in particular, fermionic. Since we are considering the free energy of the string

theory, we work in the vacuum where such Kontsevich branes are absent. However, as

we now explain, it is still possible to place noncompact branes at infinity on the Riemann

surface and they can reproduce just the desired term in the free energy.

Consider the case R = 1. Suppose we place a single noncompact B-brane along one

branch of the degenerate fibre over a point x on the Riemann surface. We would like to

isolate its contribution to the free energy compared with that of a brane at a fixed reference

position x∗, or in other words we assume that the brane is asymptotically at x∗ but its

interior region has been moved to x. The action of such a brane has been shown [31, 21]

to be:6

S(x) =
1

gs

∫ x

x∗

p(z) dz (3.5)

As we have seen, for the case of interest to us the Riemann surface consists of two

disjoint factors:

xp =
gs

2
y, xp =

gs

2
ȳ (3.6)

6In the language of ref. [21], we place the branes in the “x-patch” and never move them to the “p-patch”.
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Thus a brane on the first branch contributes:

S(x) =
µ

gs
ln

x

x∗
(3.7)

Let us now place one noncompact brane above each of the two branches, and take their

asymptotic positions to be at x∗, x
′
∗ which will both be sent to infinity. Then their total

contribution to the free energy is:

S(x, x′) =
1

2

(

y ln
x

x∗
+ ȳ ln

x′

x′
∗

)

(3.8)

Now we will choose our branes such that x, x′ are also at infinity, but rotated by angles

θ, θ′ respectively along the circle at infinity relative to the original points x∗, x
′
∗. Namely:

x = x∗ eiθ, x′ = x′
∗ eiθ′ (3.9)

It follows that:

S(x1, x2) =
i

2
(y θ + ȳ θ′)

= −µM (θ − θ′) + i
q̂

2
(θ + θ′) (3.10)

The factors of gs have conveniently cancelled out, and the real part of the above contribution

is proportional to µM . Now if we choose:

θ = −θ′ =
π

4
(|q| − |q̃|) (3.11)

we find that the noncompact branes give a contribution:

S = −
π

2
µM (|q| − |q̃|) (3.12)

to the free energy, precisely equal to that in eq. (3.1) at R = 1.

To summarise, we have shown that if we place a noncompact B-brane at x → ∞ on

each branch of the Riemann surface

H(p, x) = (px − µ)(px − µ′) = 0 (3.13)

and moreover require that the branes wind at infinity by the angles in eq. (3.11), we

precisely reproduce the disc contribution to the free energy of eq. (3.1). This situation is

depicted in figure 1.7

This then completes the definition of the topological dual to type 0A strings at the

special radius.

The above system also has a description in topological-anti-topological language. As

we have seen, the topological theory then lives on the pure conifold, having a Riemann

surface with only one branch. Now we place a single noncompact brane on it with winding

angle θ given by eq. (3.11). Adding the anti-topological theory introduces the second

noncompact brane with winding −θ and we recover the correct free energy.

7While it is reasonable to expect that noncompact branes exist for any reasonable boundary conditions,

including the ones we have imposed, it is less clear whether for given boundary conditions the noncompact

brane configuration is unique.
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p = ∞

x
∗
1

x
∗
2

x = ∞ x1

x2

Figure 1: The Riemann surface with noncompact branes at infinity.

3.2 Integer and rational radius

Let us now extend these considerations to other integer radii. At radius R = p, we have the

possibility of placing noncompact branes at infinity on each of 2p branches of the Riemann

surface H(x, p) = 0 obtained from eq. (2.30). Parametrising the angles by which these

branes wind as:

xi = x∗i e
i θi , x′

i = x′
∗i e

i θ′i , (3.14)

the contribution of these branes to the free energy is:

S(xi, x
′
i) =

i

2

p
∑

j=1

(

yj θj + ȳj θ′j
)

= −µM

p
∑

j=1

(θj − θ′j) + i

p
∑

j=1

q̂j

2
(θj + θ′j) (3.15)

where

q̂j = q̂ − 1 +
2j − 1

p
, j = 1, 2, . . . , p (3.16)

It is natural to take

θj = −θ′j =
π

4
(|q| − |q̃|) , all j = 1, 2, . . . , p (3.17)

which leads to a contribution to the free energy:

S = −
π

2
µM (|q| − |q̃|) (3.18)

in precise agreement with eq. (3.1) for R = p.

It appears as if in this case the noncompact brane configuration is not unique. However,

note that choosing θj = −θ′j for all j is essential to make the free energy real. After this,

the choice we have made is the most symmetric one which gives the correct disc amplitude.

In the topological-anti-topological approach, we would instead have p branches in

the Riemann surface and therefore p noncompact branes with associated angles θk. The

remaining noncompact branes with angles −θk then arise on the anti-topological side.

It is quite nontrivial that we were able to reproduce the subtle disc term by a simple

configuration of noncompact branes in every case. The scaling with gs of the holomorphic
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Chern-Simons action and of the complex-structure moduli µk,k′ defined in eq. (2.40) exactly

cancel out. Moreover, µk,k′ all have a common imaginary part proportional to µM . These

facts were important in allowing us to obtain the desired contribution from noncompact

branes.

Now let us briefly consider rational radius. If we accept the Z2p × Z2p′ orbifold inter-

pretation of eq. (2.38) then it is not clear how to extend the above considerations to radius

R = p
p′

. This is because the manifold is no longer of the form zw = H(p, x) and therefore

the Riemann surface interpretation itself needs to be generalised, which lies beyond the

scope of the present work.

4. Discussion

One of our main results has been that the noncritical-topological correspondence for type

0 noncritical strings has to include noncompact branes on the topological side. This intro-

duces a dependence on a new parameter which we interpret as |q| − |q̃| on the noncritical

side, and renders the duality consistent with the dependence of the noncritical theory on

three parameters: µM , q and q̃.

The identification between the phases of noncompact branes and the parameter |q|−|q̃|,

via eq. (3.11), appears rather ad hoc. From eq. (3.11) it is tempting to imagine that there

could be a missing normalisation factor of 8 which changes π
4 to 2π. In that case one could

have postulated that the noncompact branes have an integer winding at infinity and this

integer gets identified with the integer |q| − |q̃|. This would make the identification a little

less ad hoc. However we did not find such a missing normalisation factor.

Given that the subtle disc term is required in the noncritical string by consistency,

one may ask if the presence of noncompact branes in the topological theory is also a

consistency requirement. However, this seems not to be the case. On the noncritical side

there is the possibility of ZZ branes in the vacuum, and it is only after including the subtle

term that the vacuum has a definite intepretation as containing or not containing such

branes. However ZZ branes do not (so far) have a direct analogue on the topological side

and so it is possible that the topological theory without the subtle disc term, and hence

with an exactly holomorphically factorised free energy, is consistent by itself. The only

thing that would fail is its correspondence to the noncritical theory. Nevertheless it would

be interesting if there were a way to understand ZZ branes from the topological side. It

would be equally interesting to understand the presence [13] of qq̃ fundamental strings in

the vacuum, for which we have not found a direct topological explanation.

We also found that the free energy of the full type 0A theory has a nonperturbatively

exact factorisation into contributions from compact and noncompact branes. Apparently

there is no room for any interactions between these different branes, or in other words the

open strings stretched among any two of these branes (both compact, or both noncompact,

or one of each) seem to decouple completely. This is somewhat puzzling but must be related

in some way to the topological nature of the theory as well as to having distinct branches

of the Riemann surface H(p, x) = 0.
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It is amusing that compact and noncompact branes make use of different pieces of the

holomorphic Chern-Simons theory restricted to a 2-cycle [32]:

S =
1

gs

∫

tr(Φ1D̄Φ0 + W (Φ0)ω) (4.1)

For compact branes, the first term can be shown to be irrelevant while the second one gives

a matrix-valued superpotential, which for our case is simply an independent quadratic for

each branch of the Riemann surface. For noncompact branes it is the second term which is

irrelevant (because the volume is infinite, we subtract the free energy of deformed compact

branes from the undeformed ones [31]) while the first term leads to the expression
∫

pdx.

In this case there is no matrix model, because we have placed only one brane on each

branch.

It is clearly of interest to generalise our construction to include more noncompact

branes that act as sources for incoming closed-string tachyons on the noncritical side,8

as well as non-normalisable deformations of the conifold which are associated to outgoing

tachyons [21]. When carried out for the general orbifolded conifold eq. (2.30), this will

provide the analogue of the Normal Matrix Model [33, 34] for type 0 strings, valid for all

rational radius. This is an important generalisation of the KP [35] model which has already

been found using the topological string construction for both bosonic c = 1 strings [21] and

type 0 strings [8].

As is well known, topological descriptions of noncritical strings are simplest at R = 1

in appropriate units, and can then be generalised to integer multiples of this radius, as done

before for bosonic strings and in this paper for type 0 strings. In this way we can describe

the Euclidean or finite-temperature version of the theory. To get to the zero-temperature

case one then has to take the limit R → ∞. This limit has been explored before, most

recently in ref. [36] where it was related to deconstruction. Our analysis in the present work

can potentially add something to this story. Consider eq. (2.34) at p′ = 1 and take p → ∞.

In this limit we find that yk,k′ varies continuously in the open interval (y − 1, y + 1). From

eq. (2.12) this amounts to saying that the RR flux effectively varies continuously over the

same interval. This suggests a higher-dimensional origin and may again link the topological

theory to deconstruction in some way.

As we have seen, all our considerations extend to the topological-anti-topological pic-

ture of ref. [11], which seems more natural in one sense. The Z2p orbifolded conifold has in

principle 2p independent complex structure parameters µk, µ̄k. The noncritical-topological

correspondence requires half of them to be constrained to be complex conjugates of the

other half, which is naturally achieved if we think of the system in the topological-anti-

topological way. In that case only the p parameters µk can be independent. However,

as we have seen, the µk are all determined in terms of two parameters embodied in y,

and the topological-anti-topological picture does not seem to help in explaining this fact.

Therefore, if it is to be genuinely useful, perhaps it needs to be extended to a generalised

principle where the holomorphic part of the free energy further factorises into contributions

from p independent theories.

8Our noncompact branes do not act as such sources precisely because they are located at x → ∞.
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